FREE-CONVECTIVE AND RADIATIVE HEAT TRANSFER
ON A VERTICAL PLANE SURFACE

O. G. Martynenko, Yu. A, Sokovishin, UDC 536.244
and M. V. Shapiro

Calculations are carried out to determine the influence of radiation on the free-convective heat
transfer of a vertical surface situated in a nonabsorbing medium. The known analytical and ex-
perimental data are compared, and a nomogram is proposed for the analysis of mixed convection,

Heat-transfer calculations for the high-temperature surfaces of equipment currently necessitate a si-
multaneous analysis of the influence of various kinds of heat transfer onthe characteristics of the process. Of
particular interest is the interaction of natural convection with radiation near a heated vertical surface. The
complex heat-transfer processes involved here are accompanied by the absorption, emission, and scattering
of radiation by the fluid [1,2]. However, for not too high a surface temperature air can be regarded as devoid
ofthe indicated properties and the influence of radiation included only inthe heat balance at the wall, If the
latter has a specified temperature, then the heat transfer for a nonabsorbing medium is determined indepen~
dently for the radiative and convective components. For a given value of the wall heat flux such independence
of the two heat-transfer modes does not hold, The heat flux from the wall is carried by the radiative compo-
nent, which depends on the local temperature, as well as by the convective and conductive components. The
latter determine the wall temperature and therefore affect the radiation,

Approximative methods have been used [3-7] to investigate the influence of radiation on the heat~transfer
of a vertical plate in a free-convective boundary layer. Explicit heat-transfer relations are obtained by inte-
gral methods. They are rather bulky and do not mirror the effects of all the parameters on the heat-transfer
process. Inthe present article we carry out a complete numerical solition of the problem over wide ranges
of the defining criteria. The data of the numerical computations make it possible to determine the limits of
applicability of the indicated results.

Let us consider laminar free-convective motion of a viscous incompressible fluid with constant physical
properties in a boundary layer next to a vertical plane surface. To calculate the lift we use the Boussinesq
approximation and neglect viscous dissipation. We assume that the wall is a diffuse gray radiator with emis-
sivity €, and for the radiative component we use the Stefan— Bolizmann law. Radiation takes place into a me-
dium having a temperature T« far from the surface.

The system of equations of motion and heat transfer in the boundary layer plus the boundary conditions
has the form
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Fig. 1. Dimensionless velocity and temperature profiles
in the boundary layer. a)R =0; b) 5; ¢) 50; 1) £ =0; 2)
0.05; 3) 0,1; 4) 0.15; 5) 0.2; 6) 0.3; 7) 0.4; 8) 0.8; 9) 1.2,

From the equation of continuity we form the stream function and in problem (1)-{4) change over tothe
variables [3]

Gr* \1/5 # \1/3
q)(x, y): 5'\/' ( rx ) F(E, 1’]), n= (EI'L) L s
. 5 5 x

QGr* \—1/5 3 ® y—1 3
T—T. =2 ( ") O, m), t=_T= x(_Gi_) , 3)

A 5 A 5

which generalize the self-similar variables of the free-convection problem for a plane surface with constant
heat flux [4].

Now problem (1)-(4) takes the form

0°F 0*F oF \? / 0E 0*F oF 0%F
—— L 4F —3{— 6 = e —_— . —— . 6
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i i
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Fig. 2. Local heat-transfer criteria Nux/Gri'/5 @) and
Nug/Gri/* versus longitudinal coordinate, 1)R =0; 2) 1;
3) 5; 4)10; 5) 50; 6) Ty = const,

For ¢ = 0the derived equations go over to the system of ordinary differential equations for the self-
similar nonradiative heat-transfer problem for a plate. The parameter R = qy/0eT%, characterizes the ratio
between the total heat flux transported from the wall surface and the radiative component. The dimensionless
longitudinal coordinate £ establishes a connection between the radiative and convective components of the heat
flux.

Near the leading edge the temperature differentials in the boundary layer are slight, and the free-con-
vective component of the heat flux takes the dominant role in heat transfer from the wall. In the upper part of
the plate the boundary layer grows thicker, and the heat flux due to convection gradually diminishes, while the
radiative component increases. Inasmuch as the latter does not depend on the thickness of the boundary layer,
but is determined by the surface temperature, it may be assumed that the surface temperature tends to a cer-
tain constant value Tw. The latter can be determined from the limiting value of the boundary condition 8T/
Oyly = 0as x = o3 Ty =T, (1+ R)/* for x — w,

Expanding the right-hand side into a series for small values of R, we obtain for the temperature differ-
ential in the boundary layer at large distances from the leading edge

Guw '
T,—T.= ToeTT as  x—»00. (9)

The most practical approach, therefore, is to seek an asymptotic solution for x — « inthe variables of the
free-convection problem near a wall with constant temperature [3]:

‘ Cr\. 1/t B . 1/4
¥ (x, y):~'4v( '4') o (L ) m=—y—( n ) )
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Fig. 3. Dimensionless frictional stress 7w versus longitudinal coor-
dinate. 1) R =0; 2)1; 3) 5; 4) 10; 5) 50,
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Fig. 4. Comparison of the results of calculations with experimental
data on local heat transfer in the form NuxGr},;/’i. 1) gy =const; 2)R =
0; 3)R=1; 4)R=5; 5)R=10; 6)R =50; 7) Ty = const; 8,9) per-
turpation method [3}; 10) quasistieady asymptotic approximation method
[7]. Experimentaldata: 11) & = 0,96; 12) 0.52; 13) 0,20 [3]; 14) 0,197;
15) 0.98 [2].

Now Egs. (1)-@) assume the form
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for M; = 0, (3)
¢=0,G=0 for 1,~» 0.

As p — =, Egs. {11)-{13) go over to the seli-similar problem for an iscthermal plate with the following
boundary condition for the dimensionless wall temperature:

G:—:—(VI-I—R—I) for 1, = 0.

The radiative heat-transfer calculations are carried out mainly by approximative methods.

Cess [3] represents the solution of problem (6)-(8) in the form of twa (zeroth and first) terms of a power
series in £. The dependence on the parameter R shows up only in the second term of the series. Accordingly,
Furman and Nenishev [5] represent the expansion as a double power series inthe parameters £ and R, How-
ever, the convergence of the resulting series is poor. The solution of the system (11}~(13) for large ¢ can be
represented as a power series in the quantity £-3/4, Cess [3] has carried out numerical computations of the
first term of the series on the assumption of a linearized radiation model:

oe (T — Th) = 40eT% (T, — T.).

In the presence of radiation the excess wall temperature can be approximated by a single-term power
law with exponent n varying from 0 {constant temperature, £ — =) to 0.2 (constant heat flux, ¢ = 0) [2,5]. Ap-
proximate dependences of the parameter n on € and R are obtained by processing of the experimental data 5]
and numerical calculations of the complete system of equations (1)-@) [2].

The calculations of [5] are carried out by a method close to the self-gimilar version and by an integral
method with fourth-degree polynomials for the velocity and temperature distributions in the boundary layer.
The problem has also been solved by the method of averaging of functional corrections [6].

The heat-transfer expressions are represented in implici form and prove cumbersome for engineering
calculations.

The method of quasisteady asymptotic approximation has been used [7]to calculate the dependence of the
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Fig. 5. Comparison of the results of calculations with experi-
mental data on local heat transfer in the form Nug/Grsl/5.
1,2) Perturbation method (first approximation [3]); 3) method
close to the self-similar version [5]; 6,5) integral method,
limiting solutions [5]; 4) integral method; 7)R =0; 8) R =1;
9) perturbation method, second approximation [5]. Experi-
mental data: 10) € = 0,131; 11) 0.305; 12) 0.452; 13) 0.961
51

heat transfer on the variable &5/ ‘R/ 5Pr)1/ 4, Inthe limits £ — 0 and § — « the numerical results are given
with respective errors of 0.2 and 7%.

We have calculated the system of equations (6)-(8) numerically by a finite-difference technique. We use
a six-point implicit difference scheme of second order with respect to £ and  [8]. The nonlinear terms are
linearized by simple iteration [9]. For example, the boundary condition for the dimensionless wall tempera-
ture is

a0 \/+1 , .
( —5—) = — 1+ 50/ 2+ REON[2 + 2REO! + RE2(0)1).
]

Y

The computations are carried out for Pr = 0,7 (air) and values of the radiationparameter R = 0, 1, 5, 10, and
50.

Distributions of the dimensionless velocities U = u/5v (Gr;? / 5)2/ 5 and temperatures @ in the boundary
layer for various values of the longitudinal coordinate ¢ and radiation parameter R are given in Fig, 1, With
increasing £ the maximum velocity in the boundary layer decreases and shifts toward larger values of . With
increasing longitudinal coordinate the velocity and temperature profiles become increasingly flatter. The
temperature and dynamic boundary layers evolve more rapidly the larger the value of R.

The local Nussell number plotted according to the convective heat-flux component

Nu,, 1 (6@ )
w

Gr)'® T 5%, \on

decreases with £ more rapidly for larger values of R (Fig. 2a). These curves are replotted in Fig. 2b in the
variables of the fixed-temperature problem:

Nu,/Gr!/* =—(99) /(5'403%.
M Ja ‘

At £ = 0 the curves merge into a single point, which corresponds to the heat transfer for a constant heat
flux on the nonradiating surface. For large £ the Nux/Grk/ { curves (Fig. 2b) tend to the limit corresponding
to heat transfer for an isothermal plate. The asymptotic behavior of Nux/Gr,"{‘/ Yas &£ — « is of another sort
(Fig. 2a).

For large £ the heat transfer from the plate can be calculated according to the dimensionless dependence
for Tw = const. For example, the indicated heat-transfer dependence can be used with 2% error for £ > exp
(—0.49R 0.51). _

The £ dependence of the dimensionless frictional stress at the wall Tw = Tw/ B uv/x)(Gry/ 5)3/5 is anal-
ogous to the variation of the local heat transfer (Fig. 3).

698



TABLE 1, Experimental Parameters

Literature source

Physical - .

quantity (2] 13l (5]
T — T (°K) - 15—34 10—150
9w (-Wf] . 269529 1,45.106 1291854

m-y

Gr) - — 7,9.10°—5. 1010
Grz — 1,6-10"—1,3.108 -
p 0,197:0,98 0,2—0,96 0,131—0,961
R 0,61—58 3301580 0,12—19

The results of the calculations are compared with the experimental data in Figs. 4 and 5. The heat~
transfer coefficient Nux/Grﬁ(/4 (Fig. 4) calculated by the perturbation method for Pr = 0.7 [3] agrees with the
numerical solution for R = 0 within 1% error limits for £ < 0,15 (curve 8) and ¢ > 0,5 {(curve 9). Inthe case of
the quantity Nux/‘Gr; 1/5 agreement within the stated error limits obtains in a narrower range of values of £.
The results obtained in the first perturbation approximation yield heat-transfer values that are too small for
small £ and too large for large £, Inthe second approximation [5] the heat-{ransfer values computed by the
perturbation method agree well with the numerical calculations up to £ = 0,08, (curve 9 in Fig. 5). The method
close to the self-similar approach [5] gives values for the local heat-transfer coefficient that agree satisfac-
torily with the numerical solution for R = 0, 1 and £ < 0.2, but gives excessive values for ¢ — = (12% too high
for £ = 0.6) (curve 3 in Fig. 5). Approximately the same error occurs for the integral method [5] (curve 4) and
the limiting solutions obtained by this method (curves 5 and 6). The values of Nu,,;Gr%/‘1 calculated by the quasi~
steady asymptotic approximation method [7] exhibit poor agreement already for the limiting value £ — = (curve
101in Fig. 4).

The domain of variation of the parameters in the experimental investigations is given in Table 1. The
shortage of initial experimental data [2, 3, 5] prevents us from collating all the experimental points on a single
graph, and that is why the experimental heat-transfer data in the form of dependences of Nux/Gr;zi/ 5 and
Nux/Gr% Y on £ are presented in two figures. To compare the experimental with the analytical results for
Nux/Gr§</4 a high experimental accuracy is required, because the limits of variation of the dimensionless heat
transfer over the entire range of £ amount to 15%. In Fig. 4, however, the scatter of the experimental points
is greater than this value. Although Cess [3] claims agreement within 8% between the theoretical and experi-
mental resulis, the discrepancy is in fact much greater. Clearly, only the results for equal values of the
parameter R can be legitimately compared. In [3], essentially, the theoretical curves for R = 0 atre compared
with experimental points for R = 330 to 1580, ‘

The secatter of the experimental points is much smaller in Fig. 5, in which the calculations are com~
pared with the experiments of [5] for Nug/Gr1/5,

It is noted that the experimental data agree with the numerical curves within 4 or 5% error limits for
D<R<1,

Thus, the accuracy of the existing experiments is inadequate for a complete quantitative assessment of
the applicability of the given simplified radiation model.

NOTATION

u, v, projections of velocity vector onto the X and Y axes; x, longitudinal coordinate; y, transverse co-
ordinate; T, absolute temperature; q, heat flux; v, kinematic viscosity coefficient; g, gravitational accelera-
tion; B, coefficient of volume expansion; @, thermal diffusivity; A, thermal conductivity; o, Stefan —Boltz-
mann constant; &, emissivity; ax, local heat-transfer coefficient; ry, frictional stress at the wall; y, stream
function; F, ¢, ®, G, dimensionless stream functions and temperatures; ¢ = (O'ET:?;OX/A)(GT;/5)1/5, ¢ = 55/4,
dimensionless longitudinal coordinates; n = (Grt/5)/5(7/x), m = Grg/4)Y/4y/x), self-similar variables;

Gryg =g Baywx’/ Av?, modified Grashof number; Grx =gBqyx/r®40eT3,, Grashof number; Pr, Prandtl number;
Nug, Nusselt number; R, radiation parameter, Indices: x, local value; L, average value; «, far from sur-
face; t, fixed temperature; j, iteration number; w, wall; 0, coordinate origin,
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.

NUMERICAL ANALYSIS OF SUPERSONIC FLOW OF AN
IDEAL GAS IN THE WAKE OF AN
AXISYMMETRICAL BODY

V. V. Bulanov UDC 518:517.944/947

A numerical experiment is carried out on supersonic flow in the wake of an axisymmetrical
body, and estimates are obtained for the "scheme" (@rtificial) viscosity introduced by 2 maxi-
mally stable difference scheme [1] into the investigated flow,

1, Statement of the Problem

Many papers have been published in the period from 1965 through 1975 on the numerical solution of
problems involving the flow of a viscous liquid and a compressible gas in the wake of a body with separation
points and reverse-circulation flow zones., Inthe majority of those papers the complete system of Navier
—Stokes equations is approximated by a finite-difference scheme of first or second order, which is then
solved by some suitable numerical or iterative technique.

However, solutions of the complete system of Navier —Stokes equations are obtained only for relatively
small to moderate (values of a few hundred) Reynolds numbers (see, e.g., {3,4]). The numerical results ob-
tained in these studies mainly corroborate the schematic representations of the flow pattern both in the separa-
tion zone and in the wake as a whole.

Very few results have been published on the numerical study of supersonic flows in the wakes of bodies
at high and very high Reynolds numbers.

A modern approach that offers fuller understanding and investigation of the singular characteristics of
flow at large Reynolds numbers is the application of shock-smearing (or shock-capturing) finite-difference
schemes, which approximate the system of Euler equations rather than the complete system of Navier — Stokes
equations (see, e.g., [5,6]).

The numerical solutions generated by such investigations may be viewed as numerical experiments,
which correspond in their principal features to the true flow pattern for sufficiently large Reynolds numbers
and yet are useful not only for the deeper insight that they offer info the singular flow characteristics at
corners, inaft and wake zones, etc., but also for exhibiting the capabilities and singular characteristics of
the difference scheme itself, for example the influence of the spatial mesh size of the computing grid, type of
artificial viscosity, etc., on the accuracy of computation.

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 32, No. 6, pp. 1080-1086, June, 1977. Original
article submitted March 25, 1976,
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